Extensions 1→N→G→Q→1 with N=C22×S3 and Q=A4

Direct product G=N×Q with N=C22×S3 and Q=A4
dρLabelID
C22×S3×A436C2^2xS3xA4288,1037

Semidirect products G=N:Q with N=C22×S3 and Q=A4
extensionφ:Q→Out NdρLabelID
(C22×S3)⋊A4 = (C22×S3)⋊A4φ: A4/C1A4 ⊆ Out C22×S3246(C2^2xS3):A4288,411
(C22×S3)⋊2A4 = S3×C22⋊A4φ: A4/C22C3 ⊆ Out C22×S336(C2^2xS3):2A4288,1038

Non-split extensions G=N.Q with N=C22×S3 and Q=A4
extensionφ:Q→Out NdρLabelID
(C22×S3).1A4 = (C4×C12)⋊C6φ: A4/C1A4 ⊆ Out C22×S3366+(C2^2xS3).1A4288,405
(C22×S3).2A4 = C42⋊C3⋊S3φ: A4/C1A4 ⊆ Out C22×S3486(C2^2xS3).2A4288,406
(C22×S3).3A4 = S3×C42⋊C3φ: A4/C22C3 ⊆ Out C22×S3366(C2^2xS3).3A4288,407
(C22×S3).4A4 = C2×S3×SL2(𝔽3)φ: trivial image48(C2^2xS3).4A4288,922

׿
×
𝔽